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manufacturing systems with max-plus algebra

Ton J.J. van den Boom∗ and Bart De Schutter∗

February 15, 2025

Abstract

Manufacturing systems can often be modeled as max-plus-linear (MPL) systems. MPL
systems are discrete-event systems with synchronization but no choice and they are linear
in the so-called max-plus algebra, which has addition maximization as its basic operations.

In this chapter we present an in-depth account of the model predictive control (MPC)
framework for MPL systems. MPC is an on-line model based controller design method
that is very popular in the process industry and that can also be extended to MPL
systems. A key advantage of MPC is that it can accommodate constraints on the inputs
and outputs of the controlled system. In MPC the optimal control signal is obtained
by an optimization over all possible future control sequences. In general, the resulting
MPL-MPC optimization problem is nonlinear and nonconvex. However, we show that
if the control objective is piecewise affine, the constraints are linear, and if the control
objective and the constraints depend monotonically on the outputs of the system, which is
a frequently occurring situation for manufacturing systems, the MPL-MPC optimization
can be recast into a linear programming problem, which can be solved very efficiently.

Subsequently we focus on implementation and timing aspects, closed-loop behavior,
and tuning rules for MPL-MPC. We derive sufficient conditions for stability and formu-
late a closed-loop expression for the unconstrained MPL-MPC controller. In the case of
perturbed operation due to modeling errors and/or noise we need a robust MPL-MPC con-
troller. We show that under quite general conditions the resulting optimization problems
can be solved very efficiently. For the bounded error case we also derive an MPL-MPC
controller by optimizing over feedback policies, rather than open-loop input sequences. In
general, this results in increased feasibility and a better performance. Finally we discuss
robust MPC for MPL systems with stochastic uncertainty.

Keywords: Discrete-event systems; Predictive control; Model-based control; Generalized
predictive control; Max-plus-linear systems; Max-plus algebra.

∗Delft University of Technology, Delft Center for Systems and Control, Mekelweg 2, 2628 CD Delft, The
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1 Introduction

Discrete-event systems are event-driven dynamical systems (i.e., their dynamics are due
to asynchronous occurrences of discrete events and so the state transitions are initiated
by events, rather than a clock), that often arise in the context of manufacturing systems,
telecommunication networks, railway networks, parallel computing, etc. Discrete-event
systems with synchronization but no choice can be described by models that are “linear”
in the max-plus algebra, and they are called max-plus-linear (MPL) systems. In the
last decades there has been an increasing amount of research on MPL systems. Most
literature on this class of systems addresses the performance analysis of MPL systems
[2, 13, 14, 22, 28]. Design of optimal controllers for MPL systems using residuation
techniques are given in [16, 37, 41]. Another approach for control of MPL systems is the
Model Predictive Control (MPC) approach.

In MPC [35, 40] dynamical models are used to predict the system dynamics. The MPC
problem is usually formulated as solving on-line a finite horizon open-loop optimal control
problem subject to system dynamics and constraints involving states and controls. Many
successful applications of MPC have been reported for conventional time-driven systems,
and it is now one of the most applied advanced control technique in the process industry.
MPC has also been extended to MPL discrete event systems [19, 25, 26, 44, 45, 47, 46,
55, 64].

This chapter considers the problem of designing an MPC controller for the class of
MPL discrete event systems, and gives and extensive overview of the available results.
We consider the case where the input, output and state sequence must satisfy a given set
of linear inequality constraints. In Section 1.2 and 1.3 we start with some background in
MPC for time-driven systems and give some basic results in max-plus algebra and max-
plus-linear systems. In Section 2 we introduce the basics of MPC for MPL systems. The
MPC optimization problem is introduced and appropriate choices for the cost criterion
and the constraints will be discussed. We introduce the prediction and control horizon
and present the problem in a standard form. The resulting optimization problem can be
solved using various algorithms. In Section 3 the performance of the MPC controller is
analyzed. For the unconstrained case we give an analytic expression for the controller
and provide sufficient conditions for stability. Section 4 treats robust MPC in the case of
perturbed operation due to modeling errors and/or noise. We consider both the bounded
perturbation case and the stochastic perturbation case and we show that under quite gen-
eral conditions the resulting optimization problems can be solved very efficiently. Section
5 provides a final discussion on the status and perspectives of MPC for MPL systems.

1.1 Model predictive control for time-driven systems

In this section we give a short introduction to MPC for time-driven discrete-time systems.
More extensive information on MPC can be found in [11, 35].

Consider a plant with nu inputs and ny outputs that can be modeled by a state space
description (in conventional linear algebra) of the form

x(k) = Ax(k − 1) +Bu(k) (1)

y(k) = Cx(k) . (2)

The vector x ∈ R
n represents the state, u ∈ R

nu the input, y ∈ R
ny the output, and k ∈ Z

is the discrete time counter. In order to distinguish systems that can be described by a
model of the form (1) – (2) from the max-plus-linear systems that will be considered later
on, a system that can be modeled by (1) – (2) will be called a plus-times-linear system.

In MPC a performance index or cost criterion J is formulated that reflects the reference
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tracking error (Jout) and the control effort (Jin):

J(k) = Jout(k) + βJin(k)

=

Np−1
∑

j=0

ny
∑

i=1

(

ŷi(k + j|k)− ri(k + j)
)2

+ β

Np−1
∑

j=0

nu
∑

i=1

(

ui(k + j)
)2

(3)

where ŷ(k+ j|k) is the estimate of the output at time step k+ j based on the information
available at time step k, r ∈ R

ny is a reference signal, β is a non-negative scalar, and Np

is the prediction horizon.
In MPC the input is often taken to be constant from a certain point on: u(k + j) =

u(k + Nc − 1) for j = Nc, . . . , Np − 1 where Nc is the control horizon. The use of
a control horizon leads to a reduction of the number of optimization variables. This
results in a decrease of the computational burden, a smoother controller signal (because
of the emphasis on the average behavior rather than on aggressive noise reduction), and
a stabilizing effect (since the output signal is forced to its steady-state value).

MPC uses a receding horizon principle. At time step k the future control sequence
u(k), . . . , u(k +Nc − 1) is determined such that the cost criterion is minimized subject
to the constraints. At time step k the first element of the optimal sequence (u(k)) is
applied to the process. At the next time step the horizon is shifted, the model is updated
with new information of the measurements, and a new optimization at time step k + 1 is
performed.

By successive substitution of (1) in (2), estimates of the future values of the output
can be computed [11]. In matrix notation we obtain:

ỹ(k) = C̃ x(k − 1) + D̃ ũ(k)

with

ỹ(k) =











ŷ(k|k)
ŷ(k+1|k)

...
ŷ(k+Np−1|k)











, r̃(k) =











r(k)
r(k+1)

...
r(k+Np−1)











, ũ(k) =











u(k)
u(k+1)

...
u(k+Np−1)











, (4)

C̃(k) =











CA
CA2

...
CANp











, D̃ =











CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CANp−1 CANp−2B . . . CB











. (5)

The MPC problem at time step k for plus-times-linear systems is defined as follows:

Find the input sequence u(k), . . . ,u(k+Nc−1) that minimizes the performance
index J(k) subject to the linear constraint

E(k)ũ(k) + F(k)ỹ(k) +G(k)r̃(k) 6 h(k) (6)

with E(k) ∈ R
l×nuNp , F(k) ∈ R

l×nyNp , G(k) ∈ R
l×nyNp , h(k) ∈ R

l for some
integer l, subject to the control horizon constraint

u(k + j) = u(k +Nc − 1) for j = Nc, Nc + 1, . . . , Np − 1 (7)

Note that minimizing J(k) subject to (6) and (7), boils down to a convex quadratic
programming problem, which can be solved very efficiently.
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The parameters Np, Nc, and β are the three basic MPC tuning parameters: The
prediction horizon Np is related to the length of the step response of the process, and
the time step set {1, 2, . . . , Np} should contain the crucial dynamics of the process. The
control horizon Nc 6 Np is usually taken equal to the system order. The parameter β > 0
makes a trade-off between the tracking error and the control effort, and is usually chosen
as small as possible (while still getting a stabilizing controller).

1.2 Max-plus algebra and max-plus-linear systems

Max-plus algebra

The basic operations of the max-plus algebra (see also Chapter 2) are maximization and
addition [2, 17, 28], which will be represented by ⊕ and ⊗ respectively:

x⊕ y = max(x, y) and x⊗ y = x+ y

for x, y ∈ Rε
def
= R ∪ {−∞}. Define ε = −∞. The structure (Rε,⊕,⊗) is called the max-

plus algebra [2]. The operations ⊕ and ⊗ are called the max-plus-algebraic addition and
max-plus-algebraic multiplication respectively since many properties and concepts from
linear algebra can be translated to the max-plus algebra by replacing + by ⊕ and × by ⊗.

The matrix εm×n is the m × n max-plus-algebraic zero matrix: (εm×n)ij = ε for
all i, j; and En is the n × n max-plus-algebraic identity matrix: (En)ii = 0 for all i and
(En)ij = ε for all i, j with i 6= j. If A,B ∈ R

m×n
ε , C ∈ R

n×p
ε then

(A⊕B)ij = Aij ⊕Bij = max(Aij ,Bij)

(A⊗C)ij =

n
⊕

k=1

Aik ⊗Ckj = max
k

(Aik +Ckj)

for all i, j. Note the analogy with the conventional definitions of matrix sum and product.
A max-plus diagonal matrix S = diag⊕(s1, . . . , sn) has elements Sij = ε for i 6= j and

diagonal elements Sii = si for i = 1, . . . , n. E = diag⊕(0, . . . , 0) is the max-plus identity
matrix. The matrix εm×n is the m × n max-plus-algebraic zero matrix: (εm×n)ij = ε
for all i, j. The max-plus-algebraic matrix power of A ∈ R

n×n
ε is defined as follows:

A⊗
0
= E and A⊗

k
= A⊗A⊗

k−1
for k = 1, 2, . . . If for a max-plus diagonal matrix S =

diag⊕(s1, . . . , sn) all si are finite, the inverse of S is equal to S⊗
−1

= diag⊕(−s1, . . . ,−sn).

Then it holds that S⊗ S⊗
−1

= S⊗
−1

⊗ S = E. For any matrix A ∈ R
n×n
ε we can define

A∗ = E⊕A⊕A⊗2 ⊕A⊗3 ⊕ . . .

Finally we introduce the max-plus-algebraic eigenvalue of a matrix A ∈ R
n×n
ε . The

scalar λ ∈ Rε is a max-plus-algebraic eigenvalue if there exists a v ∈ R
n
ε with at least one

finite entry such that A ⊗ v = λ ⊗ v [2]. The vector v is called a max-plus-algebraic
eigenvector.

Max-plus-linear systems

Discrete-event systems with only synchronization and no concurrency can be modeled by
a max-plus-algebraic model of the following form [2, 17, 28]:

x(k) = A⊗ x(k − 1)⊕B⊗ u(k) (8)

y(k) = C⊗ x(k) (9)
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with A ∈ R
n×n
ε , B ∈ R

n×nu
ε , and C ∈ R

ny×n
ε where nu is the number of inputs, ny the

number of outputs, and n is the system order. Note the analogy of the description (8) – (9)
with the state space model (1) – (2) for plus-times-linear systems. An important difference
with the description (1) – (2) is that now the components of the input, the output, and the
state are event times, and that the counter k in (8) – (9) is an event counter (and event
occurrence instants are in general not equidistant), whereas in (1) – (2) k increases each
clock cycle. For a manufacturing system, u(k) would typically represent the time instants
at which raw material is fed to the system for the kth time, x(k) the time instants at which
the machines start processing the kth batch of intermediate products, and y(k) the time
instants at which the kth batch of finished products leaves the system. The matrices A,
B, and C consist of the event durations, such as production times or transportation times.
A discrete-event system that can be modeled by (8) – (9) will be called a max-plus-linear
time-invariant discrete-event system or max-plus-linear (MPL) system for short.

The MPL system (8)-(9) is called structurally controllable if all states are connected
to some input [2]. It can be checked that the system is structurally controllable iff the
matrix

Γn =
[

B A⊗B . . . A⊗
n−1

⊗B
]

is row-finite (i.e., if it has at least one finite element in each row) [24].
The MPL system (8)-(9) is called structurally observable if all states are connected

to some output [2]. It can be checked that the system is structurally observable iff the
matrix

On =
[

CT AT ⊗CT . . . AT ⊗
n−1

⊗CT

]

is row-finite (i.e., if it has at least one finite element in each row) [24].

Remark 1 For plus-times-linear systems the influence of noise is usually modeled by
adding an extra noise term to the state and/or output equation. For MPL models the
entries of the system matrices correspond to production times or transportation times.
So instead of modeling noise (i.e., variation in the processing times) by adding an extra
max-plus-algebraic term in (8) or (9), noise should rather be modeled as an additive term
to these system matrices. We will discuss perturbed MPL models in Section 4.
Note that in some papers disturbances are seen as exogenous and uncontrollable inputs
acting on the system [15, 32]. For more information we refer to these two papers. ⋄

Max-plus-scaling functions and max-plus-non-negative-scaling functions

Let Smps be the set of max-plus-scaling functions, i.e., functions f of the form f(z) =
maxi=1,...,m(µi + νi,1z1 + . . . + νi,nzn), with variable z ∈ R

n
ε and constants νi,j ∈ R and

µi ∈ R. If we want to stress that f is a function of z we will denote this by f ∈ Smps(z).
Let Smpns denote the set of max-plus-non-negative-scaling functions, i.e., max-plus-

scaling functions f(z) = maxi=1,...,m(µi + νi,1z1 + . . . + νi,nzn), with νi,j > 0 for all
j = 1, . . . , n.

Proposition 2 [54]
The set Smpns is closed under the operations max, +, and scalar multiplication by a
non-negative scalar. ⋄

Proposition 3 [54]
If f ∈ Smpns then f is a nondecreasing function of its arguments. ⋄
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2 Model predictive control for max-plus-linear sys-

tems

2.1 Evolution of the system

We assume that x(k), the state at event step k, can be measured or estimated using
previous measurements. We can then use (8) – (9) to estimate the evolution of the output
of the system for the input sequence u(k), . . . ,u(k +Np − 1):

y(k + j|k) = C⊗A⊗
j+1

⊗ x(k − 1)⊕

j
⊕

i=0

C⊗A⊗
j−i

⊗B⊗ u(k + i) ,

or, in matrix notation, ỹ(k) = C̃⊗ x(k − 1)⊕ D̃⊗ ũ(k) with

C̃ =













C⊗A

C⊗A⊗
2

...

C⊗A⊗
Np













,

D̃ =











C⊗B ε . . . ε
C⊗A⊗B C⊗B . . . ε

...
...

. . .
...

C⊗A⊗
Np−1

⊗B C⊗A⊗
Np−2

⊗B . . . C⊗B











,

where ỹ(k) and ũ(k) are defined by (4).

2.2 Cost criterion

Also in MPC for MPL systems a performance index or cost criterion J is formulated that
reflects the reference tracking error (Jout) and the control effort (Jin):

J(k) = Jout(k) + βJin(k) .

A straightforward translation of the cost criterion used in MPC for plus-times-linear
systems is not very useful in practice. We therefore discuss more appropriate choices for
the output cost criterion Jout and the input cost criterion Jin.

Tracking error or output cost criterion Jout

If the reference signal r(k) with the due dates for the finished products is known and if
we have to pay a penalty for every delay, a well-suited cost criterion is the tardiness:

Jout,1(k) =

Np−1
∑

j=0

ny
∑

i=1

max(yi(k + j|k)− ri(k + j), 0) . (10)

If we have perishable goods, then we could want to minimize the differences between the
reference signal and the actual output time instants. This leads to

Jout,2(k) =

Np−1
∑

j=0

ny
∑

i=1

|yi(k + j|k)− ri(k + j)| . (11)
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For a smooth production in manufacturing systems it may be important that the difference
between two consecutive deliveries ∆yi(k) = yi(k)−yi(k−1) shows little variation. This
means we want to balance the output rates, and we can consider

Jout,3(k) =

Np−1
∑

j=0

ny
∑

i=1

|∆2yi(k + j|k)| (12)

where ∆2s(k) = ∆s(k)−∆s(k − 1) = s(k)− 2s(k − 1) + s(k − 2) for a signal s(·).

Input cost criterion Jin

A straightforward translation of the plus-times-linear input cost criterion ũT (k)ũ(k) would
lead to a minimization of the input time instants. Since this could result in input buffer
overflows, a better objective is to maximize the input time instants. For a manufacturing
system, this would correspond to a scheme in which raw material is fed to the system as
late as possible. As a consequence, the internal buffer levels are kept as low as possible.
This also leads to a notion of stability if we let instability for the manufacturing system
correspond to internal buffer overflows. So for MPL systems an appropriate cost crite-
rion is Jin,0(k) = −ũT (k)ũ(k) . Note that this is exactly the opposite of the input effort
cost criterion for plus-times-linear systems. Another objective function that leads to a
maximization of the input time instants is

Jin,1(k) = −

Np−1
∑

j=0

nu
∑

i=1

ui(k + j) . (13)

Similar to the balancing of the output rates (12) it may be important to minimize the
variation of the feeding rates of the raw material into the manufacturing system. This
means we want to balance the input rates, and we can consider

Jin,2(k) =

Np−1
∑

j=0

nu
∑

i=1

|∆2ui(k + j)| . (14)

We could replace the summations in (10) – (14) by max-plus-algebraic summations (i.e.,
maximizations), or consider weighted mixtures of several cost criteria.

2.3 Constraints

Just as in MPC for plus-times-linear systems we can consider the linear constraint

E(k)ũ(k) + F(k)ỹ(k) +G(k)r̃(k) 6 h(k) . (15)

Furthermore, it is easy to verify that typical constraints for discrete-event systems are
minimum or maximum separation between input and output events:

a1(k + j) 6 ∆u(k + j) 6 b1(k + j) for j = 0, . . . , Nc − 1 (16)

a2(k + j) 6 ∆y(k + j|k) 6 b2(k + j) for j = 0, . . . , Np − 1 , (17)

or maximum due dates for the output events:

y(k + j|k) 6 r(k + j) for j = 0, . . . , Np − 1 , (18)

can also be recast as a linear constraint of the form (15).
Since for MPL systems the input and output sequences correspond to occurrence times

of consecutive events, they should be nondecreasing. Therefore, we should always add the
condition ∆u(k + j) > 0 for j = 0, . . . , Nc − 1 to guarantee that the input sequences are
nondecreasing.
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2.4 The evolution of the input beyond the control horizon

A straightforward translation of the conventional control horizon constraint would imply
that the input should stay constant from event step k+Nc on, which is not very useful for
MPL systems since there the input sequences should normally be increasing. Therefore,
we change this condition as follows: the feeding rate should stay constant beyond event
step k +Nc, i.e.,

∆u(k + j) = ∆u(k +Nc − 1) for j = Nc, . . . , Np − 1 , (19)

or ∆2u(k+j) = 0 for j = Nc, . . . , Np−1. This condition introduces regularity in the input
sequence and it prevents the buffer overflow problems that could arise when all resources
are fed to the system at the same time instant as would be implied by the conventional
control horizon constraint (7).

2.5 The standard MPC problem for MPL systems

If we combine the material of previous subsections, we finally obtain the following problem:

min
ũ(k),ỹ(k)

J(k) = min
ũ(k),ỹ(k)

Jout,p1
(k) + βJin,p2

(k) (20)

for some Jout,p1
, Jin,p2

subject to

ỹ(k) = C̃⊗ x(k − 1)⊕ D̃⊗ ũ(k) (21)

E(k)ũ(k) + F(k)ỹ(k) 6 h(k)−G(k)r̃(k) (22)

∆u(k + j) > 0 for j = 0, . . . , Nc − 1 (23)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (24)

This problem will be called the MPL-MPC problem for event step k. MPL-MPC also
uses a receding horizon principle.

Other design control design methods for MPL systems are discussed in [2, 8, 42]. How-
ever, the majority of the methods do not allow the inclusion of general linear constraints
of the form (22) or even simple constraints of the form (16) or (17). Some recent papers
on controller design for max-plus systems take constraints on the state space into account
[1, 29, 36].

2.6 Algorithms to solve the MPL-MPC problem

Nonlinear optimization

In general the problem (20) – (24) is a nonlinear nonconvex optimization problem: al-
though the constraints (22) – (24) are convex in ũ(k) and ỹ(k), the constraint (21) is
in general not convex. So we could use standard multi-start nonlinear nonconvex local
optimization methods [9] to compute the optimal control policy.

The feasibility of the MPC-MPL problem can be verified by solving the system of
(in)equalities (21) – (24)1. If the problem is found to be infeasible we can use the same
techniques as in conventional MPC and use constraint relaxation [11]. Additional infor-
mation on these topics are given in Section 3.

1In general this is a nonlinear system of equations but if the constraints depend monotonically on the
output, the feasibility problem can be recast as a linear programming problem (cf. Theorem 4).
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The ELCP approach

Now we discuss an alternative approach which is based on the Extended Linear Comple-
mentarity Problem (ELCP) [18]. Consider the ith row of (21) and define J C

i = { j | C̃ij 6=

ε} and JD
i = { j | D̃ij 6= ε}. We have ỹi(k) = max

(

max
j∈JC

i

(C̃ij + xj(k − 1)), max
j∈JD

i

(D̃ij +

ũj(k))
)

or equivalently

ỹi(k) > C̃ij + xj(k − 1) for j ∈ J C
i

ỹi(k) > D̃ij + ũj(k) for j ∈ JD
i

with the extra condition that at least one inequality should hold with equality (i.e., at
least one residue should be equal to 0):

∏

j∈JC
i

(ỹi(k)− C̃ij − xj(k − 1)) ·
∏

j∈JD
i

(ỹi(k)− D̃ij − ũj(k)) = 0 . (25)

Hence, (21) can be rewritten as a system of equations of the form

Aeỹ(k) +Beũ(k) + ce(k) > 0 (26)
∏

j∈φi

(Aeỹ(k) +Beũ(k) + ce(k))j = 0 for i = 1, . . . , nyNp (27)

for appropriately defined matrices and vectors Ae,Be, ce, and index sets φi. We can
rewrite the linear constraints (22) – (24) as

E(k)ũ(k) + F(k)ỹ(k) +G(k)r̃(k)− h(k) > 0 (28)

L(k)ũ(k) + ℓ(k) = 0 . (29)

So the feasible set of the MPC problem (i.e., the set of feasible system trajectories)
coincides with the set of solutions of the system (26) – (29), which is a special case of an
Extended Linear Complementarity Problem (ELCP) [18]. In [18] we have developed an
algorithm to compute a compact parametric description of the solution set of an ELCP. In
order to determine the optimal MPC policy we can use nonlinear optimization algorithms
to determine for which values of the parameters the objective function J over the solution
set of the ELCP (26) – (29) reaches its global minimum. The algorithm of [18] to compute
the solution set of a general ELCP requires exponential execution times, which implies
that the ELCP approach is not feasible if Nc is large.

Monotonically nondecreasing objective functions

Now consider the relaxed MPC problem which is also defined by (20) – (24) but with the
=-sign in (21) replaced by a >-sign. Note that whereas in the original problem ũ(k) is the
only independent variable since ỹ(k) can be eliminated using (21), the relaxed problem
has both ũ(k) and ỹ(k) as independent variables. It is easy to verify that the set of
feasible solutions of the relaxed problem coincides with the set of solutions of the system
of linear inequalities (26), (28), (29). So the feasible set of the relaxed MPC problem is
convex.

A function : y → f(y) is a monotonically nondecreasing function if ȳ 6 y̌ implies that
f(ȳ) 6 f(y̌). Now we show that if the objective function J and the linear constraints are
monotonically nondecreasing as a function of ỹ (this is the case for J = Jout,1, Jin,1, or
Jin,2, and e.g., Fij > 0 for all i, j), then the optimal solution of the relaxed problem can
be transformed into an optimal solution of the original MPC problem. If in addition the
objective function is convex (e.g., J = Jout,1 or Jin,1), we finally get a convex optimization
problem.
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Theorem 4 [19]
Let the objective function J and mapping ỹ → F(k)ỹ be monotonically nondecreasing
functions of ỹ. Let (ũ∗, ỹ∗) be an optimal solution of the relaxed MPC problem. If we
define ỹ♯ = C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ∗⊕ then (ũ∗, ỹ♯) is an optimal solution of the original
MPC problem. ⋄

Proposition 5 [19, 64]
By introducing some additional dummy variables, the MPC-problem with linear output
cost-function J(k) = Jout,1(k) can be reduced to a linear programming problem, which can
be solved very efficiently. ⋄

3 Implementation aspects and performance analysis

In this chapter we explore the performance of the MPL system in closed with an MPC
controller. More specifically, we focus on implementation, stability, feasibility, timing
aspects, and derive some tuning rules. Consider the standard MPC problem (20)-(24) for
MPL systems (8)-(9) with

Jout(k) =

Np−1
∑

j=0

ny
∑

i=1

max(yi(k + j|k)− ri(k + j), 0) =

nyNp
∑

i=1

max(ỹi(k)− r̃i(k), 0) (30)

Jin(k) =

Np−1
∑

j=0

nu
∑

i=1

(ri(k + j)− ui(k + j)) =

nuNp
∑

i=1

(r̃i(k)− ũi(k)). (31)

For a manufacturing system, cost functions (30)-(31) correspond to a scheme in which
raw material is fed to the system as late as possible (Just-in-time control). Note that this
implies that the internal buffer levels are kept as low as possible.

3.1 Unconstrained MPC

In this section we will take a closer look at the closed-loop behavior of MPC of an uncon-
strained MPL system. We consider the unconstrained MPL-MPC problem of minimizing
(20), where J is given by (30)-(31), subject to (21) and (23).

Closed-loop expression

In conventional MPC theory, in the absence of inequality constraints, the closed loop
consisting of the (conventional) linear time-invariant (LTI) process with the MPC con-
troller, is again an LTI system (in the conventional algebra). Unfortunately, there is no
analogous property for MPL systems. However, an analytic closed-loop expression can
be formulated for the unconstrained MPC for MPL systems. This expression involves
the operations minimization and addition. In fact, the expression is linear in the min-
plus algebra, which is the dual of the max-plus algebra and which has minimization (⊕′)
and addition (⊗′) as basic operations. So in the case the closed-loop system would be a
min-max-plus system. For the MPC optimization problem of minimizing cost criterion
(30)-(31) we can derive an analytic expression for the MPC control law as follows:

Lemma 6 [60]
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Define

ũ♯(k) =
[

uT (k−1) uT (k−1) · · · uT (k−1)
]T

, (32)

z̃(k) = C̃⊗ x(k − 1)⊕ D̃⊗ ũ♯(k)⊕ r̃(k),

=
[

zT (k|k) zT (k+1|k) . . . zT (k+Np−1|k)
]T

, (33)

and let for ℓ = 1, . . . , nu

u∗
ℓ (k+j|k) =







min
i

min
m

(zm(k+i|k)− [D̃ij ]mℓ) for j = Np−1

min
(

min
i

min
m

(zm(k+i|k)− [D̃ij ]mℓ,u
∗
ℓ (k+j+1|k)

)

for j = 1, . . . , Np−2

(34)
Then ũ∗(k) is the optimal solution of the MPL-MPC problem. ⋄

From (34) we derive the min-plus expression2:

ũ∗ = (−D̃T )⊗′ z̃⊕′ S ⊗′ ũ∗ (35)

where

S =













ε′
0 · · · ε′

...
. . .

. . .
...

...
. . . 0

ε′
· · · ε′













where ε′

ij = ∞ and [0]ij = 0 for i = 1, . . . , nu, j = 1, . . . , nu. This can be written in an
explicit form as:

ũ∗ = S∗ ⊗′ (−D̃T )⊗′ z̃

where S∗ is the min-plus Kleene star product (see Chapter 2 and [2])

S∗ = E′ ⊕′ S⊕′ S⊗
′2 ⊕′ . . . =













ε′
0 · · · 0

...
. . .

. . .
...

...
. . . 0

ε′
· · · ε′













in which E′ is the min-plus identity matrix with elements E′
ij = ε′ for i 6= j and diagonal

elements E′
ii = 0 for i = 1, . . . , n.

In the general constrained case, the closed-loop system (consisting of the MPL process
with the MPL-MPC controller) will not be an MPL system, but it will be piecewise affine
in the state x(k − 1) and reference r(k) and it can be described by max-min-plus-scaling
functions (this follows directly from the results of [4, 27]). An closed-loop expression for
the state cost criterion case is given in [47].

Stability

Stability in conventional system theory is concerned with boundedness of the states. In
MPL systems however, k is an event counter and xi(k) refers to the occurrence time of
an event. So the sequence xi(k),xi(k + 1), . . . should always be non-decreasing, and for
k → ∞ the event time xi(k) will usually grow unbounded.

2Note that the min-plus expression (35) can also be derived using residuation theory (see Chapter 2 and
[2, 17, 7]).
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In manufacturing systems we deal with input, output, and state buffers. Assume that
we have a reference signal with due dates and assume that finished parts are removed
from the output buffer at the due dates (provided that they are present). Then we
can adopt the notion of stability formulated by [50]: A discrete-event system is called
stable if all its buffer levels remain bounded. However, in manufacturing systems there
will be delays if the parts are not produced before the due date. These delays should
remain bounded. Therefore, we add as an additional condition for stability that all delays
between the reference signal and the actual output (i.e., due date) remain bounded as
well. If there are no internal buffers that are not (indirectly) coupled to the output of the
system (observability), then it is easy to verify that all the buffer levels are bounded if the
dwelling times of the parts or batches in the system remain bounded. This implies that
for an structurally controllable and structurally observable discrete event system with due
date r(k) closed-loop stability is achieved if there exist finite constants Myr, Mxr and Mur

such that

max
i

|yi(k)− ri(k)| ≤ Myr , ∀k > K (36)

max
i,j

|xj(k)− ri(k)| ≤ Mxr , ∀k > K (37)

max
i,l

|ul(k)− ri(k)| ≤ Mur , ∀k > K (38)

Let λmax be the largest max-plus algebraic eigenvalue of A. This eigenvalue λmax

gives a minimum for the average duration of a system cycle. In this chapter we consider a
reference signal r(k), that the output should track. If the asymptotic slope of the reference
signal r(k) is smaller than λmax, the system cannot complete tasks in time and y(k)−r(k)
will grow unbounded in time. Therefore in this chapter we choose

r(k) = r0 + ρ k. (39)

where r0 ∈ R is a vector of offsets. In [55] it has been shown that the condition ρ > λmax

is necessary for stability.

Definition 7 Given an MPL system (8)-(9) and a reference (39) with

ρ > λmax, (40)

in which λmax denotes the largest max-plus-algebraic eigenvalue of A. The equilibrium
point (x0,u0, r0) is defined for a given r0 as the solution of

(x0,u0) = arg max
u0,x0

nu
∑

i=1

[u0]i (41)

such that x0 = A⊗ x0 ⊕B⊗ u0 (42)

r0 > C⊗ x0 (43)

Lemma 8 [47, 58]
Given an MPL system (8)-(9) and a reference (39) with ρ > λmax in which λmax denotes
the largest max-plus-algebraic eigenvalue of A. The equilibrium point (x0,u0, r0) can be
computed for a given r0 as follows

u0 = −((C⊗A∗
ρ ⊗B)T ⊗ r0) ,

x0 = A∗
ρ ⊗B⊗ u0 .

(44)

where [Aρ]ij = [A]ij − ρ ⋄
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Consider a system (8)-(9) and a reference signal (39). To simplify the derivations
we will restrict ourselves to SISO systems, so B ∈ R

n×1
ε , and C ∈ R

1×n
ε . However, all

derivations in this and the next section can easily be extended to MIMO systems. Let
λmax be the largest eigenvalue of the matrix A, and consider a tracking rate ρ > λmax.
We will now normalize this system. There exists a max-plus-algebraic invertible diagonal
matrix P such that the matrix

Ā = (P⊗
−1

⊗A⊗P)− ρ (45)

satisfies Āij < 0, ∀i, j [47]. Now define

B̄ = (P⊗
−1

⊗B) + u0 , (46)

C̄ = (C⊗P)− r0, (47)

where u0 is given by (44). Define the normalized signals

x̄(k) =
(

P⊗
−1

⊗ x(k)
)

− ρ k , (48)

ū(k) = u(k)− ρ k − u0 , (49)

ȳ(k) = y(k)− ρ k − r0 . (50)

Then the MPL system (8)-(9) is equivalent to the normalized MPL system

x̄(k) = Ā⊗ x̄(k − 1)⊕ B̄⊗ ū(k) (51)

ȳ(k) = C̄⊗ x̄(k) (52)

Corollary 9 Consider the normalized system (51)-(52). By substitution of the system
matrices of the normalized system in (44) we find

r̄0 = 0 (53)

ū0 = −((C̄⊗ Ā∗ ⊗ B̄)T ⊗ r0) = 0 (54)

ȳ0 = C̄⊗ x̄0 = C̄⊗ Ā∗ ⊗ B̄⊗ ū0 = 0 (55)

From (55) we find C̄⊗ Ā∗ ⊗ B̄ 6 0 and so

C̄⊗ Ā⊗
i
⊗ B̄ ≤ 0 , ∀i > 0 (56)

⋄

Consider the normalized MPL system (51)-(52). The MPC problem for this system is
reformulated as follows:

min
ū(k),...,ū(k+Np−1)

Np−1
∑

j=0

(

ny
∑

m=1

max(ȳm(k+j|k) , 0)− β

nu
∑

ℓ=1

ūℓ(k+j)

)

(57)

subject to

ūℓ(k + j)− ūℓ(k + j − 1) > −ρ, for j = 0, . . . , Np−1, ℓ = 1 . . . , nu, (58)

Define the signals ū♭ and z̄:

ū♭(k+j) = (ū(k−1)− ρ (j + 1))⊕ 0

z̄(k+j|k) = 0⊕ C̄⊗ Ā⊗
j+1

⊗ x̄(k − 1)⊕

j
⊕

i=0

C̄⊗ Ā⊗
j−i

⊗ B̄⊗ ū♭(k+i)

for j = 0, . . . , Np−1.
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Proposition 10 Assume 0 < β < 1/(nuNp) and define the matrices ˜̄Dℓ = C̄⊗ Ā⊗
ℓ
⊗ B̄

for ℓ = 0, . . . , Np − 1. Consider the maximization problem

max
ū(k),...,ū(k+Np−1)

Np−1
∑

j=0

(

nu
∑

ℓ=1

ūℓ(k + j)

)

(59)

subject to

[ ˜̄Di−j ]m,ℓ + ūℓ(k + j|k) ≤ z̄m(k + i|k) , ∀ℓ,m, ∀i > j, i, j ∈ {0, . . . , Np − 1} (60)

ūℓ(k+j)− ūℓ(k+j−1) > −ρ ∀ℓ, ∀j ∈ {0, . . . , Np − 1} (61)

Then, ū(k), . . . , ū(k +Np − 1) is the optimal input sequence for the MPL-MPC problem
(57)-(58) at event step k. The output for this optimal input sequence is given by

ȳ(k + j|k) = z̄(k + j|k)

⋄

Proof : Define

˜̄u(k) =











ū(k)
ū(k + 1)

...
ū(k+Np−1)











, ˜̄u
∗
(k) =











ū∗(k)
ū∗(k + 1)

...
ū∗(k+Np−1)











, ˜̄u
♯
(k) =











ū♯(k)
ū♯(k + 1)

...
ū♯(k+Np−1)











where the sequence ū∗(k), . . . , ū∗(k + Np − 1) is the optimal solution for MPL-MPC
problem (57)-(58), and the sequence ū♯(k), . . . , ū♯(k+Np − 1) is the optimal solution for
optimization problem (59)-(61). First define

Jout(˜̄u(k)) =

Np−1
∑

j=0

ny
∑

m=1

max(ȳm(k+j|k) , 0) , Jin(˜̄u(k)) =

Np−1
∑

j=0

nu
∑

ℓ=1

− ūℓ(k+j)

so that

J(˜̄u(k)) =Jout(˜̄u(k)) + β Jin(˜̄u(k))

We will prove that for any ˜̄u
♯
(k) 6= ˜̄u

∗
(k) we find J(˜̄u

♯
(k)) > J(˜̄u

∗
(k)). The proof consists

of two parts. First we define ū♮(k+ j) = ū♯(k+ j)⊗ ū∗(k+ j) and ˜̄u
♮
(k) = ˜̄u

♯
(k)⊗ ˜̄u

∗
(k)

and prove that J(˜̄u
♮
(k)) 6 J(˜̄u

♯
(k)), and secondly we prove that J(˜̄u

∗
(k)) 6 J(˜̄u

♮
(k)).

Part 1:

Introduce the signal ū♮(k + j) = ū♯(k + j)⊕ ū∗(k + j). First define

ȳ♮(k+j|k) = C̄⊗ Ā⊗
j+1

⊗ x̄(k − 1)

⊕

j
⊕

i=0

C̄⊗ Ā⊗
j−i

⊗ B̄⊗ ū♮(k+i)
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Now we derive:

ȳ♮(k+j|k)⊕ z̄(k+j|k) = C̄⊗ Ā⊗
j+1

⊗ x̄(k − 1)

⊕

j
⊕

i=0

C̄⊗ Ā⊗
j−i

⊗ B̄⊗ u♮(k+i)⊕ z̄(k+j|k)

= C̄⊗ Ā⊗
j+1

⊗ x̄(k − 1)

⊕

j
⊕

i=0

C̄⊗ Ā⊗
j−i

⊗ B̄⊗ ū♯(k+i)

⊕

j
⊕

i=0

C̄⊗ Ā⊗
j−i

⊗ B̄⊗ ū∗(k+i)⊕ z̄(k+j|k)

= ȳ∗(k+j|k)⊕ z̄(k+j|k)

because
j
⊕

i=0

C̄⊗ Ā⊗
j−i

⊗ B̄⊗ ū∗(k+i) ≤ z̄(k+j|k)

and

ȳ♯ = C̄⊗ Ā⊗
j+1

⊗ x̄(k − 1)⊕

j
⊕

i=0

C̄⊗ Ā⊗
j−i

⊗ B̄⊗ ū♯(k+i)

This implies that J(˜̄u
∗
(k)) = J(˜̄u

s
harp(k)). Note that u♮(k + j) > u♯(k + j) and so

Jin(˜̄u
n
atural(k)) = −

Np−1
∑

j=0

nu
∑

ℓ=1

u♮
ℓ(k+j)

≤ −

Np−1
∑

j=0

nu
∑

ℓ=1

u♯
ℓ(k+j)

= Jin(u
♯, k)

Part 2:

Next let us consider the vector ˜̄u
♮
(k) that satisfies (61) but does not satisfy (60). Let

α > 0 be such that

max
ℓ=1,...,nu

max
j=1,...,Np

(ū♮
ℓ(k + j)− ū∗

ℓ (k + j)) = α

then there exists a i′, j′ ∈ {1, . . . , Np−1}, m′ ∈ {1, . . . , ny} and ℓ′ ∈ {1, . . . , nu} such that

ū♮
ℓ′(k + j′)− ū∗

ℓ′(k + j′) = α

ȳ∗
m′(k + i′|k) = [ ˜̄Di′−j′ ]m′,ℓ′ + ū∗

ℓ′(k + j′) = z̄m′(k + i′|k)

ȳ♮
m′(k + i′|k) = [ ˜̄Di′−j′ ]m′,ℓ′ + ū♮

ℓ′(k + j′) = z̄m′(k + i′|k) + α

and so

Jout(˜̄u
♮
(k)) =

Np−1
∑

j=0

ny
∑

m=1

max(ȳ♮
m(k+j|k) , 0) (62)

>

Np−1
∑

j=0

ny
∑

m=1

max(z̄m(k+j|k) , 0) + α (63)

= Jout(˜̄u
∗
(k)) + α (64)

16



On the other hand

Jin(˜̄u
♮
(k)) = −β

Np−1
∑

j=0

nu
∑

ℓ=1

ū♮
m(k+j)

> −β

Np−1
∑

j=0

nu
∑

ℓ=1

(ū∗
m(k+j) + α)

= −βJin(˜̄u
∗
(k))−Npnuα

This means that

J(˜̄u
♮
(k)) = Jout(ū

♮, k) + Jin(ū
♮, k)

> Jout(ū
∗, k) + α+ Jin(ū

∗, k)− βNpnuα

= J(˜̄u
∗
(k)) + (1− βNpnu)α

With β < 1/(Npnu) we finally find that

J(˜̄u
♮
(k)) > J(˜̄u

∗
(k))

Combining the results of the parts 1 and 2 obtain

J(˜̄u
♯
(k)) > J(˜̄u

♮
(k)) > J(˜̄u

∗
(k))

This proves that ˜̄u
∗
(k) is the optimal solution of the original MPC problem. Note that

it is to show that if ˜̄u
♮
(k) 6= ˜̄u

∗
(k) then we find a strict inequality J(˜̄u

♮
(k)) > J(˜̄u

∗
(k))

and if ˜̄u
♯
6= ˜̄u

♮
we find the strict inequality J(˜̄u

♯
(k)) > J(˜̄u

♮
(k)). This means that the

optimum ˜̄u
∗
is unique. ⋄

The maximization problem (59)-(61) can be solved using linear programming algo-

rithms. Note that because z̄(k+j|k) > 0 and ˜̄Dℓ = C̄ ⊗ Ā⊗
ℓ
⊗ B̄ ≤ 0 by (56), we find

that due to the maximization of ū(k + j) in (59) we have ū(k + j) > 0 for all j.

Next we look closer at the concept of stability for normalized systems. In a normalized
MPL system, k is an event counter and x̄i(k) refers to the delay in occurrence time of
an event. So similar to stability in conventional system theory, where boundedness of the
states is required, in normalized MPL systems the state x̄i(k) should remain bounded.
This implies that for an structurally controllable and structurally observable max-plus
linear system with ρ > λmax the closed-loop stability is achieved if there exist finite con-
stants ȳmax, x̄max, ūmax, K such that for the output, state, and input of the corresponding
normalized system we have

max
i

|ȳi(k)| ≤ ȳmax , ∀k > K (65)

max
i

|x̄i(k)| ≤ x̄max , ∀k > K (66)

max
i

|ūi(k)| ≤ ūmax , ∀k > K (67)

Let us now compare the stability conditions (65)-(67) with the notion of stability for
discrete-event systems from [50], in which a discrete-event system is called stable if all its
buffer levels remain bounded. Condition (65) means that the delay ȳ(k) = y(k) − r(k)
remains bounded. Condition (66) implies that the number of parts in the output buffer
will remain bounded. Finally, condition (67) together with (65) means that the time
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between the starting date u(k) and the output date y(k) (i.e., the throughput time) is
bounded.

Before we can give our main result on stability in Theorem 13 we need to introduce
two additional lemmas.

Lemma 11 Let x̄ ∈ R
n
ε and Ā ∈ R

n×n
ε with Āij 6 0 for all i, j. Then we have

Ā⊗
l+n

⊗ x̄ 6 Ā⊗
l+n−1

⊗ x̄⊕ Ā⊗
l+n−2

⊗ x̄⊕ . . .⊕ Ā⊗
l
⊗ x̄ (68)

for any integer l > 1. ⋄

Proof : Note that if (68) holds for l = 1, it will hold for any integer l > 1 due to the
monotonicity of max-plus-algebraic multiplication [2, 17].

We will first show that (68) holds for l = 1 and for the max-plus-algebraic unit vectors
e1, . . . , en where ej is defined as follows:

(ej)i =

{

0 if i = j

ε otherwise

for i = 1, . . . , n, i.e., we prove

(Ā⊗
n+1

⊗ ej)i 6(Ā⊗
n
⊗ ej)i ⊕ (Ā⊗

n−1
⊗ ej)i ⊕ . . .⊕ (Ā⊗ ej)i . (69)

Note that for ej and any integer ℓ > 0, we have (Ā⊗
ℓ
⊗ ej)i = (Ā⊗

ℓ
)ij for all i.

Now we use the fact that the max-plus-algebraic matrix power has the following graph-

theoretic interpretation [2]: the value of (Ā⊗
ℓ
)ij with ℓ a positive integer corresponds the

maximum weight of a path of length ℓ from vertex j to vertex i in the precedence graph
G(Ā) of Ā, which is defined as follows: G(Ā) has n vertices and an arc with weight Āij

from vertex j to vertex i for every pair (i, j) such that Āij 6= ε (So Āij 6= ε indicates that
there is no arc from vertex j to vertex i).

Let i, j ∈ {1, . . . , n}. Now we consider two cases: if there is no path of any length

from vertex j to vertex i, then we have (Ā⊗
ℓ
)ij = ε for all ℓ and thus

ε=(Ā⊗
n+1

⊗ ej)i6(Ā
⊗
n
⊗ ej)i⊕. . .⊕(Ā⊗ ej)i = ε . (70)

So in this case (69) holds. Now we consider the case that there is at least one path from
vertex j to vertex i in G(Ā). Since G(Ā) has n vertices, we obtain — after the removal of
any loops in the path, if present — a path of length ℓ with 1 6 ℓ 6 n. So the right-hand
side of (69) is different from ε. Let us denote the value of the right-hand side of (69) in
this case by wmax. If we now consider a path P of length n + 1 from vertex j to vertex
i, then this path has to contain at least one loop, as well as loop-free path from vertex j
to vertex i with a length between 1 and n. The maximal weight of the loop-free path will
be less than or equal to wmax, and due to the fact that the entries of Ā are less than or
equal to zero, the weight of the loops is also less than or equal to zero, which implies that
the weight of P is also less than or equal to wmax. So (69) also holds in this case.

So now we have proven that (68) holds for the max-plus-algebraic unit vectors e1, . . . , en.
Since any vector x̄ ∈ R

n
ε can be written as

x̄ =

n
⊕

i=1

x̄i ⊗ ei

and since max-plus-algebraic addition and multiplication are monotonous [2], (68) also
holds. ⋄
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Lemma 12 Let x̄ ∈ R
n
ε and Ā ∈ R

n×n
ε with Āij 6 0 for all i, j. Then we have

Ā⊗
l
⊗x̄6Ā⊗

l−1
⊗x̄⊕Ā⊗

l−2
⊗x̄⊕. . .⊕Ā⊗x̄ (71)

for any integer l > n. ⋄

Proof : From Lemma 11 it follows that

Ā⊗
l
⊗x̄6Ā⊗

l−1
⊗x̄⊕Ā⊗

l−2
⊗x̄⊕. . .⊕Ā⊗

l−n
⊗x̄ (72)

Using the implication w ≤ v =⇒ w ≤ v ⊕ z it immediate follows that

Ā⊗
l
⊗x̄6

(

Ā⊗
l−1

⊗x̄⊕Ā⊗
l−2

⊗x̄⊕. . .⊕Ā⊗
l−n

⊗x̄
)

⊕
(

Ā⊗
l−n−1

⊗x̄⊕Ā⊗
l−n−2

⊗x̄⊕. . .⊕Ā⊗x̄
)

(73)

⋄

Theorem 13 Let a normalized MPL system (51)-(52) be structurally controllable and
structurally observable. For every event step k we compute the optimal input sequence by
solving (57)-(58) and we apply only ū(k). Let Np > n and 0 < β < 1/(Npnu). Define the
function

V (k) = Npny max
j=0,...,Np−1

max
i

max(ȳi(k + j|k), 0) (74)

There holds:
V (k) > 0 , V (k + 1) ≤ V (k) (75)

Furthermore, we have
V (k) > J(k) (76)

Together with the fact that J(k) > 0, this means that the closed-loop system is stable. ⋄

Proof : First we prove (76):

V (k) = Npny max
j=0,...,Np−1

max
i

max(ȳi(k + j|k), 0)

>

Np−1
∑

j=0

ny
∑

i=1

max(ȳi(k + j|k), 0)

>

Np−1
∑

j=0

(

ny
∑

i=1

max(ȳi(k + j|k), 0)− β

nu
∑

ℓ=1

ūℓ(k + j|k)
)

= J(k)

where we have used the fact that ū(k + j|k) > 0 for all j = 0, 1, . . . , Np − 1.
Next we prove (75). First of all, note that by (74) we have V (k) > 0. The next step is to
prove V (k + 1) ≤ V (k):
Consider

V (k + 1) = Npny max
j=1,...,Np

max
i

max(ȳi(k + j|k+1), 0)

We will first prove that ȳ(k + j|k+1) = ȳ(k + j|k) for j = 1, . . . , Np − 1.

19



With x̄(k|k + 1) = x̄(k|k) we can easily observe that z̄(k+j|k+1) = z̄(k+j|k) and so
according to Proposition 10 we have ȳ(k+j|k+1) = ȳ(k+j|k). To prove that V (k+1) ≤
V (k) we have to prove:

max
i

ȳi(k +Np|k+1) ≤ max
j=0,...,Np−1

max
i

ȳi(k + j|k)

First note that at event step k+1 the signals ū♭ and z̄ for j > 1 are given by

ū♭(k+j|k+1) = (ū(k)− ρ j)⊕ 0

z̄(k+j|k+1) = 0⊕ C̄⊗ Ā⊗
j
⊗ x̄(k)

⊕

j
⊕

i=1

C̄⊗ Ā⊗
j−i

⊗ B̄⊗ ū♭(k+i|k).

Now define

ȳ♮(k+Np|k+1) = C̄⊗ Ā⊗Np+1 ⊗ x̄(k − 1)

ȳ♯(k+Np|k+1) =

Np
⊕

j=0

C̄⊗ Ā⊗Np+1 ⊗ B̄⊗ ū(k|k)

⊕

Np
⊕

j=1

C̄⊗ Ā⊗Np−j

⊗ B̄⊗ ū♭(k+j|k+1)

Using this we derive

0⊕ ȳ♮(k+Np|k+1)⊕ ȳ♯(k+Np|k+1) =

= 0⊕ C̄⊗ Ā⊗Np+1 ⊗ x̄(k − 1)⊕ C̄⊗ Ā⊗Np+1 ⊗ B̄⊗ ū(k|k)

⊕

Np
⊕

j=1

C̄⊗ Ā⊗Np−j ⊗ B̄⊗ ū♭(k+j|k+1)

= 0⊕ C̄⊗ Ā⊗Np ⊗ x̄(k)⊕

Np
⊕

j=1

C̄⊗ Ā⊗Np−j ⊗ B̄⊗ ū♭(k+j|k+1)

= z̄(k+Np|k+1)

= ȳ(k+Np|k+1)

where the last step is due to Proposition 10. From Lemma 12 we know that for all x̄ ∈ R
n
ε

we have
Ā⊗

Np+1
⊗ x̄ ≤ Ā⊗

Np

⊗ x̄⊕ Ā⊗
Np−1

⊗ x̄⊕ . . .⊕ Ā⊗ x̄

since Np > n, and so using observability we obtain

C̄i ⊗ Ā⊗
Np+1

⊗ x̄(k − 1) ≤ C̄i ⊗ Ā⊗
Np

⊗ x̄(k − 1)

⊕ C̄i ⊗ Ā⊗
Np−1

⊗ x̄(k − 1)⊕ . . .⊕ C̄i ⊗ Ā⊗ x̄(k − 1)

where C̄i denotes the ith row of matrix C̄. This results in

ȳ♮
i(k +Np|k + 1) ≤ max

j=0,...,Np−1
ȳ♮
i(k + j|k + 1) for j = 0, . . . , Np
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With ȳi(k + j|k) ≤ C̄i ⊗ Ā⊗j+1 ⊗ x̄(k − 1) for j = 0, . . . , Np − 1 we derive

ȳ♮
i(k +Np|k + 1) ≤ max

j=0,...,Np−1
ȳ♮
i(k + j|k + 1)

≤ max
j=0,...,Np−1

ȳi(k + j|k + 1)

for j = 0, . . . , Np. Using ȳ(k + j|k) = z̄(k + j|k) > 0 we find

0⊕ ȳ♮
i(k +Np|k + 1) ≤ max

j=0,...,Np−1
ȳi(k + j|k)

Further we know that for j = 0, . . . , Np − 1,

ū♭(k+j|k+1) = (ū(k)− ρ j)⊕ 0 ≤ ū(k+j|k)

This means that

C̄i ⊗ Ā⊗Np−j ⊗ B̄⊗ ū♭(k + j|k + 1)

≤ C̄i ⊗ Ā⊗Np−j ⊗ B̄⊗ ū(k + j|k)

≤ ȳi(k + j|k)

for j = 0, . . . , Np − 1. This results in

ȳ♯
i(k+Np|k+1) ≤ max

j=0,...,Np−1
ȳi(k+j|k)

and so it follows:

ȳi(k+Np|k+1) = 0⊕ ȳ♮
i(k+Np|k+1)⊕ȳ♯

i(k+Np|k+1)

≤ max
j=0,...,Np−1

ȳi(k+j|k)

We finally obtain:

max
i

ȳi(k+Np|k+1) ≤ max
j=0,...,Np−1

max
i

ȳi(k+j|k)

We now have that V (k) will be non-increasing, and so the function J(k) will be
bounded. This implies that there exists an upper bound for ȳ(k), and that ū(k) will
have both an upper and lower bound. With the property that ȳ(k) − ū(k) > C̄ ⊗ B̄ we
also prove that ȳ(k) has an lower bound. The system is structurally controllable, which
means that if ū(k) has a lower bound, then x̄(k) will have a lower bound. Due to the fact
that λmax(Ā) ≤ 0, we find that if the initial state x̄(0) has an upper bound and ū(k) has
an upper bound, then x̄(k) will have an upper bound. This proves that the closed-loop
system is stable. ⋄

3.2 Constrained case

The existence of a solution of MPL-MPC problem in the presence of constraint (15)
at event step k can be verified by solving the system of (in)equalities (21)–(24), which
describes the feasible set of the problem. Now, feasibility in the MPL-MPC problem
is comparable to feasibility in conventional MPC. Infeasibility occurs when solving ũ(k)
from (21)–(24) results in a solution set that is empty. In that case, some constraints could
be relaxed. The constraints (21) and (23) should always be satisfied because of their
physical meaning. The control horizon constraint (24) is used to reduce the number of
variables in the optimization. By increasing Nc the degrees of freedom increases and the
optimization may become feasible for a larger Nc. However, an increase of Nc may give a
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dramatic increase of computational burden and may also lead to instability in the case of
modeling errors. So for constraint relaxation, we therefore concentrate on the constraint
(22).

If for a certain step k the problem is not feasible, so if the set described by the
constraints (21)–(24) is empty, then constraint (22) can be relaxed as follows. First, we
choose a diagonal matrix R ∈ R

nE×nE with non-negative diagonal entries, where nE is
the number of rows of E(k). Now we introduce a vector ν(k) ∈ R

nE of dummy variables
and we solve the problem

min
ũ(k),ỹ(k),ν(k)

Jout(ỹ) + βJin(ũ) +

nE
∑

i=1

νi(k) (77)

subject to (21), (23), (24) and

E(k)ũ(k) + F(k)ỹ(k) +Gr̃(k) 6 h(k) +Rν(k) (78)

ν(k) > 0 . (79)

The entries of diagonal matrix R give a measure on the violation degree of the corre-
sponding constraints.

For R > 0 optimization problem (77)-(79) is feasible since the constraints can always
be met by making the components of ν(k) sufficiently large. Also note that inclusion of
the term ν1(k) + · · · + νnE

(k) in the objective function makes the constraint violations
w.r.t. the original infeasible problem as small as possible. Furthermore, if the original
(infeasible) MPL-MPC problem satisfies the conditions of Theorem 4 (i.e., the mapping
ỹ → F(k)ỹ is a monotonically non-decreasing function of ỹ) then the problem (77) – (79)
also satisfies these conditions so that Theorem 4 still applies. Moreover, the new objective
function is also convex since the relaxation term is linear.

3.3 Timing

Max-plus-linear systems are different from conventional time-driven systems in the sense
that the event counter k is not directly related to a specific time. So far we have assumed
that at event step k the state x(k− 1) is available (recall that x(k− 1) contains the time
instants at which the internal activities or processes of the system start for the (k − 1)th
cycle). Therefore, we will present a method to address the availability issue of the state at
a certain time instant t. Since the components of x(k−1) correspond to event times, they
are in general easy to measure. So we consider the case of full state information. Also
note that measurements of occurrence times of events are in general not as susceptible
to noise and measurement errors as measurements of continuous-time signals involving
variables such as temperature, speed, pressure, etc. Let t be the time instant when an
MPC problem has to be solved. We can define the initial cycle k as follows:

k = argmax
{

ℓ | xi(ℓ− 1) ≤ t , ∀i ∈ {1, 2, . . . , n}
}

Hence, the state x(k − 1) is completely known at time t and thus u(k − 1) is also avail-
able (due to the fact that in practical applications the entries of the system matrices are
non-negative or take the value ε). Note that at time t some components of the future3

states and of the forthcoming inputs might be known (so xi(k + ℓ) ≤ t and uj(k + ℓ) ≤ t
for some i, j and some ℓ > 0). Due to causality, these states are completely determined
by the known forthcoming inputs. During the optimization at time instant t the known
values of the input have to be fixed by equality constraints, which fits perfectly in the

3Future in the event counter sense.
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framework of a linear programming problem. With these new equality constraints we can
perform the MPC optimization at time t.

3.4 Tuning

In this section we will give some guidelines to find suitable choices of the three tuning
parameters (Np, Nc, β) and to select an appropriate reference signal r(k). The selection of
appropriate parameters has to lead to a stabilizing and effective control law. To facilitate
the discussion we assume that we are dealing with a SISO system (so ny = nu = 1).
Furthermore, we will assume irreducibility of the system4. In many applications, e.g., in
manufacturing systems, this assumption is not restrictive [14].

The parameters Np, Nc, and β are the three basic tuning parameters of the MPC
algorithm. However, as we have already pointed out in the previous section, a closer look
at the reference signal is necessary for stability reasons. As will be become clear in this
section, the conventional MPC rules of thumb for tuning [53] of Np, Nc and β can be
applied to MPC for MPL systems as well, with minor changes only. Before we discuss the
MPL-MPC tuning rules, we first need to consider some properties of the impulse response
of an MPL system. The sequence {e(k)}∞k=0 with e(0) = 0 and e(k) = ε for k 6= 0 is
the max-plus-algebraic unit impulse. The output sequence that results from applying a
max-plus-algebraic unit impulse to an MPL system is called the impulse response of the
system5. It is easy to verify that the impulse response of an MPL system with system

matrices A, B, C is given by {G(k)}∞k=0 with G(k) = C⊗A⊗
k
⊗B.

Proposition 14 ([2, 14]) Let {G(k)}∞k=0 be the impulse response of a SISO MPL system
with an irreducible system matrix A. Then there exist constants c, k0 ∈ N\{0}, and ρ0 ∈ R

such that

G(k) = c ρ0 +G(k − c) for all k > k0. (80)

⋄

An impulse response that exhibits the behavior (80) is called ultimately periodic with
cycle period c. The variable ρ0 gives the average duration of a cycle and is equal to the
max-plus-algebraic eigenvalue of system matrix A. The length of the impulse response is
defined as the minimal value k0 for which (80) holds.

The state space representation of the input-output behavior of a given MPL system
by a triple of system matrices A, B, C is not unique. Just as in conventional system
theory we define the minimal system order of an MPL system as the minimal dimension
of the system matrix A over all possible state space realizations of the given system. In
conventional system theory for linear discrete-time systems the minimal system order is

4An MPL system with system matrix A ∈ R
n×n
ε is said to be irreducible if (A⊕A⊗

2

⊕ . . .⊕A⊗
n−1

)ij 6= ε

for all i, j with i 6= j.
5If we consider a production system then we can give the following physical interpretation to the impulse

response. At event counter k = 0 all the internal buffers of the system are empty. Then we start feeding raw
material to the input buffer and we keep on feeding raw material at such a rate that the input buffer never
becomes empty. The time instants at which finished products leave the system correspond to the terms of the
impulse response.
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given by the rank of the semi-infinite Hankel matrix H∞,∞ defined by

H∞,∞ =











G(0) G(1) G(2) . . .
G(1) G(2) G(3) . . .
G(2) G(3) G(4) . . .
...

...
...

. . .











.

with G(k) the kth Markov parameter. In contrast to linear algebra the different notions
of rank (like column rank, row rank, minor rank, . . .) are in general not equivalent in
the max-plus algebra. Nevertheless, a characterization of the minimal system order of an
MPL system can be found in [22]. Unfortunately, computing the minimal system order
of an MPL system is not a trivial task and it is often computationally very intensive.
However, upper and lower bounds for the minimal system order of an MPL system can
be determined as follows. The so-called max-plus-algebraic minor rank and Schein rank
of H provide lower bounds [22, 23]. At present, there are no efficient (i.e., polynomial
time) algorithms to compute the max-plus-algebraic minor rank or the Schein rank of a
matrix. The max-plus-algebraic weak column rank of H provides an upper bound [22, 23].
Efficient methods to compute this rank are described in [17, 22].

Selection of the reference signal r(k)

Let λmax be the largest eigenvalue of the matrix A. Then the maximum production rate
of the system is given by 1/λmax. The slope of reference signal must therefore be such that
the average production rate is lower than 1/λmax. For a stable solution we need a reference
signal r(k) for which there exist a ρ > λmax and an r0 ∈ R, such that r(k) > r0 + k ρ for
all k.

Tuning of the parameter Np

From Theorem 13 we know that for stability in the unconstrained case and with a reference
signal (39) we need to choose Np > n. However, in the case of constraints or in the case
of a different reference signal (e.g., a reference signal with due dates that are gathered in
batches [55]), it is usually desirable that the time event set {0, . . . , Np − 1} contains the
crucial dynamics of the process to guarantee feasibility or to improve the performance.

Tuning of the parameter β

Theorem 13 gives an upper and lower bound for the parameter β:

0 < β < 1/(Npnu)

Tuning of the parameter Nc

The real power of the MPC approach lies in the assumption made about future control
actions. Instead of allowing them to be “free”, the increments of u(k) are assumed to be
zero:

∆2u(k + j − 1) = 0 for j = Nc, . . . Np − 1.

The parameter Nc, called control horizon, can be chosen between 1 and Np. Choosing a
large Nc could be interesting when the constraints are stringent. On the other hand, one
may expect that a small Nc will lead to a more robust control law in the case of modeling
error. The choice Nc = 1 often leads to an unstable or a degraded closed-loop behavior,
because of a lack on degrees of freedom. In many cases, the optimal input signal will be
asymptotically equal to u(k) = u0+k∆u0, where u0 and ∆u0 are appropriate constants.
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So then we need at least two degrees of freedom to be able to reach this asymptotic
behavior.

4 Robust MPC

In this section we extend the noise-free deterministic model (8)–(9) to include uncertainty
due to modeling errors or disturbances. Results for handling uncertainty of some specific
classes of discrete-event systems are given in [12, 34, 49, 63] and the references therein. The
literature on robust control for max-plus-linear systems is relatively sparse. Some of the
contributions include closed-loop control based on residuation theory [37, 33, 41]. In this
section we will consider three robust control methods for uncertain MPL systems. Two
methods deal with a bounded uncertainty description, related to the interval uncertainty
given by [33, 31], the third method deals with stochastic uncertainty. Note that there are
few results in the literature on noise and modeling errors in an MPL context. Usually
fast changes in the system matrices will be considered as noise and disturbances, whereas
slow changes or permanent errors are considered as model mismatch. In this section both
features will be treated in one single framework.

4.1 Noise and uncertainty model

The uncertainty caused by disturbances and errors in the estimation of physical variables,
is gathered in an uncertainty vector e(k). We assume that the uncertainty vector e(k)
captures the complete time-varying aspect of the system. In this chapter we consider two
cases, related to the characterization of the perturbation:

• bounded perturbation: In this case we assume that the uncertainty/perturbation
is bounded.

• stochastic perturbation: In this case we assume that the uncertainty/perturbation
is a stochastic variable.

The system matrices of an MPL model usually consist of sums or maximizations of
internal process times, transportation times, etc. (see, e.g., [2] or Section 1.2). Since the
entries of e(k) directly correspond to the uncertainties in these duration times, it follows
from Proposition 2 that the entries of the uncertain system matrices belong to Smpns. We
obtain the system

x(k) = A(e(k))⊗ x(k − 1)⊕B(e(k))⊗ u(k) (81)

y(k) = C(e(k))⊗ x(k) (82)

where

A(e(k)) ∈ Sn×n
mpns(e(k)), B(e(k)) ∈ Sn×nu

mpns (e(k)), C(e(k)) ∈ Sny×n
mpns (e(k)) . (83)

Prediction model

We collect the uncertainty over the interval [k, k +Np − 1] in one vector

ẽ(k) =







e(k)
...

e(k +Np − 1)






.

In the bounded perturbation case we assume that ẽ(k) is in a bounded polyhedral set E .
In the stochastic case we assume ẽ(k) to be a random variable with probability density
function p(ẽ(k)).
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Now it is easy to verify that the prediction model, i.e., the prediction of the future
outputs for the system (81)–(82) is given by

ỹ(k) = C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) , (84)

in which C̃(ẽ(k)) and D̃(ẽ(k)) are given by

C̃(ẽ(k)) =







C̃1(ẽ(k))
...

C̃Np
(ẽ(k))






, D̃(ẽ(k)) =







D̃11(ẽ(k)) · · · D̃1Np
(ẽ(k))

...
. . .

...

D̃Np1(ẽ(k)) · · · D̃NpNp
(ẽ(k))







where
C̃m(ẽ(k)) = C(k +m− 1)⊗A(k +m− 1)⊗ . . .⊗A(k)

and

D̃mn(ẽ(k)) =



















C(k+m−1)⊗A(k+m−1)⊗ . . .⊗A(k+n)⊗B(k+n−1) if m > n

C(k+m−1)⊗B(k+m−1) if m = n

ε if m < n .

Lemma 15 The entries of C̃(ẽ(k)) and D̃(ẽ(k)) belong to Smpns(ẽ(k)). For a given
x(k − 1) and ũ(k) the entries of ỹ(k) belong to Smpns(ẽ(k)). ⋄

Proof : This is a direct consequence of the definition of C̃(ẽ(k)), D̃(ẽ(k)) and (84) in
combination with (83) and Proposition 2. ⋄

4.2 The bounded perturbation case

In this section we consider MPL system (81)-(82) where we assume that ẽ(k) is in a
bounded polyhedral set E . Recall that in MPL-MPC we want to minimize the criterion

J(k) = J(ỹ(k), ũ(k)) = Jout(ỹ(k)) + βJin(ũ(k))

with

Jout(ỹ(k)) =

Np−1
∑

j=0

ny
∑

i=1

max(yi(k + j|k)− ri(k + j), 0) ,

Jin(ũ(k)) = −

Np−1
∑

j=0

nu
∑

i=1

ui(k + j) .

(85)

where Jout represents the tracking error and Jin is related to the input dates. We aim
to find the optimal (ũ(k), ỹ(k)) that minimizes J(ỹ(k), ũ(k)), where ỹ(k) and ũ(k) are
related by (84). Note that, in contrast to the noise-free case, the relation between ũ(k) and
ỹ(k) is not unique anymore in the perturbed case because of the (bounded) perturbation
ẽ(k). Instead of considering general linear constraints (110) on the inputs and outputs as
was done in [19], we will only consider linear constraints E(k)ũ(k) ≤ h(k) on the input for
the perturbed case. A typical example of such a constraint is an upper and lower bound
for the input rate:

dmin(k + j) ≤ ∆u(k + j) ≤ dmax(k + j) .
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The worst-case MPC problem at event step k is now defined as follows:

min
ũ(k),ỹ(k)

max
ẽ(k)∈E

J(ỹ(k), ũ(k)) (86)

subject to ỹ(k) = C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) (87)

∆u(k + j) > 0 for j = 0, . . . , Nc − 1 (88)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (89)

E(k)ũ(k) ≤ h(k) . (90)

We now will eliminate (87) by substituting it in the cost criterion and by maximizing
the result over all possible ẽ(k). For a fixed ũ(k) the worst-case ẽ(k) will be denoted by
ẽ#(ũ(k)), or by ẽ#(k) or ẽ# for short if no confusion is possible. So for any ũ(k), we let6

ẽ#(k) = arg max
ẽ(k)∈E

Jout(ỹ(ẽ(k), ũ(k)))

J#
out(ũ(k)) = Jout(ỹ(ẽ

#(k), ũ(k))) .

The outer worst-case MPC problem is now defined as follows:

min
ũ(k)

J#
out(ũ(k)) + βJin(ũ(k))

subject to ∆u(k + j) > 0 for j = 0, . . . , Nc − 1 (91)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (92)

E(k)ũ(k) ≤ h(k) . (93)

Now we make the following assumptions:

Assumption A1: Jout is a nondecreasing7, convex function of ỹ.

Assumption A2: Jin is convex in ũ.

These assumptions hold for several objective functions that are frequently encountered
in a discrete-event systems context. As a consequence, they are not overly restrictive.
Clearly, Jout,1 and Jin,1 satisfy Assumption A1 and Assumption A2.

Proposition 16 [54]
If Assumptions A1 and A2 hold, then the outer worst-case MPC problem is convex in ũ.⋄

So the outer worst-case MPC problem is a convex problem, which can be solved very
efficiently using, e.g., an interior-point algorithm [48, 62].

Let us now consider the inner worst-case MPC problem:

max
ẽ(k)∈E

Jout(ỹ(ẽ, ũ)) (94)

subject to ỹ(ẽ, ũ) = C̃(ẽ)⊗ x(k − 1)⊕ D̃(ẽ)⊗ ũ . (95)

We will show how this problem can be solved efficiently. Recall that E is a bounded
polyhedral set. The vertices of E form a lattice w.r.t. the partial order relation ≤. Let
Ev
ẽ,max be the top points of this lattice, i.e., Ev

ẽ,max is the set of the vertex points ẽvmax of
E for which we have

6 ∃ẽ ∈ E with ẽ 6= ẽvmax and ẽvmax ≤ ẽ .

Now consider the reduced inner worst-case MPC problem:

max
ẽ(k)∈Ev

ẽ,max

Jout
(

C̃(ẽ)⊗ x(k − 1)⊕ D̃(ẽ)⊗ ũ
)

. (96)

6Note that Jin(k) does not depend on ẽ(k).
7The function f : Rn → R is nondecreasing if for any x,y ∈ R

n with xi ≤ yi for i = 1, . . . , n, we have
f(x) ≤ f(y).
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Lemma 17 [54]
If Assumption A1 holds, then for a given x(k− 1) and ũ(k) the function Jout is a convex
function of ẽ(k). ⋄

Proof : If the function h is defined by h(x) = f(g(x)) and if g is convex and f is convex
and nondecreasing, then h is convex [51, Theorem 5.1]. Functions that belong to Smpns

are convex. Since for a given ũ we have ỹ(ẽ, ũ) ∈ Smpns by Lemma 15, ỹ is convex as
a function of ẽ. Furthermore, Jout is convex and nondecreasing as a function of ỹ by
Assumption A1. Hence, Jout is convex in ẽ. ⋄

Proposition 18 [54]
If Assumption A1 holds, then an optimal solution of the reduced inner worst-case MPC
problem (96) is also an optimal solution of the (full) inner worst-case MPC problem (94)–
(95). ⋄

The set Ev
ẽ,max is independent of ũ and can thus be pre-computed off-line. Methods to

compute all vertex points of a polyhedral set can be found in [38, 43]8. Note that the
computation can be made more efficient by already discarding the vertex points that
cannot result in vertex points that will belong to Ev

ẽ,max during the computation (cf. [18]).
In combination with Proposition 18 this allows for an efficient solution of the inner worst-
case MPC problem. Since the outer worst-case MPC problem is convex by Proposition
16, this implies that the overall worst-case MPC problem can be solved efficiently.

Robust closed-loop MPC

So far we looked at MPC methods in which the prediction was done using an open-loop
method. (Note that MPC is a closed-loop method, because we use measurements of the
output or state to update the state of the controller.) In this paragraph we consider
the MPL version of the finite-horizon robust optimal control problem [6] for uncertain
dynamic systems using the min-max paradigm. This means that we will optimize over
feedback policies, rather than open-loop input sequences, and the incorporation of state
and input constraints directly into the problem formulation [46]. In general, this results in
increased feasibility and a better performance. We use a dynamic programming approach
similar to the one used in [3, 20] for finite-horizon min-max control of uncertain linear
systems with constraints. The main drawback will be a higher computational complexity.

Consider system (81)-(82) and introduce the short-hand notation

f(x(k−1),u(k), e(k)) = A(e(k))⊗ x(k−1)⊕B(e(k))⊗ u(k)

It is easy to verify that f(·) ∈ Sn
mps and f(·, ·, e) ∈ Sn

mpns for any fixed e. Since f(·, e) is a
max expression of affine terms in (x,u), each component of f(·, e) is convex [52].

Consider performance index J(k) = Jout(k) + βJin(k), where Jout and Jin are defined
in (85) and with stage cost

ℓj(x,u, r, e, k) =

ny
∑

i=1

max{C(e(k+ j))⊗xi(k+ j|k)− ri(k+ j), 0}−β

nu
∑

i=1

ui(k+ j), (97)

8The paper [38] also provides more information on the complexity of computing the set of vertices of E and
a (crude) upper bound for the number of elements of E (and thus also of Ev

ẽ,max).
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where 0 ≤ β. We assume that the system is subject to input and state constraints over a
finite horizon of length Np:

E(j)u(k + j) + F(j)x(k + j) +G(j)r(k + j) +H(j)e(k + j) ≤ h(k + j), j = 0, 2, . . . , Np

(98)

where E(j) ∈ R
l×nu ,F(j) ∈ R

l×n,G(j) ∈ R
l×ny ,H(j) ∈ R

l×ne and h(j) ∈ R
l. The

following assumption will be used:

A1: The matrices F(j) in (98) are non-negative for all j = 0, . . . , Np.

Instead of the control variable ũ(k) we will now introduce the decision variable as a
control policy π := (µ1(·),µ2(·), . . . ,µNp

(·)), where each µj : R
n ×R

pNp → R
m is a state

feedback control law. Let φ(j;x(k−1), π(k), ẽ(k)) denote the state solution of (81)-(82)
at step j when the initial state is x(k−1), the control is determined by the policy π, i.e.,
u(k+j) = µk+j(φ(j;x(k−1), π(k), ẽ(k)), r̃(k)). By definition, φ(−1;x(k−1), π(k), ẽ(k)) :=
x(k−1). The cost is defined as:

VNp
(x(k−1), π(k), r̃(k), ẽ(k)) :=

Np
∑

j=1

ℓj(x(k + j),u(k + j), r(k + j), e(k + j)), (99)

where x(k + j) = φ(j;x(k−1), π(k), ẽ(k)), u(k + j) := µj(x(k + j − 1), r̃(k)), and ℓj is
the stage cost.

For each initial condition x(k−1) and reference signal r̃(k) we define the set of feasible
policies π:

ΠNp
(x(k−1), r̃(k)) :={π : E(j)µj(φ(j;x(k−1), π(k), ẽ(k)), r̃(k))

+F(j)φ(j;x(k−1), π(k), ẽ(k))+G(j)r(k + j)+H(j)e(k + j)≤h(j),

∀ẽ∈E , j=0, . . . , Np − 1}, (100)

Also, let XNp
(k) denote the set of initial states and reference signals for which a feasible

policy exists, i.e., XNp
(k) := {(x(k−1), r̃(k)) : ΠNp

(x(k−1), r̃(k)) 6= ∅}. The following
min-max problem will be referred to as the finite-horizon robust optimal control problem:

V 0
Np

(x(k−1), r̃(k)) := inf
π(k)∈Π

Np
(x(k−1),̃r(k))

max
ẽ(k)∈E

VNp
(x(k−1), π(k), r̃(k), ẽ(k)). (101)

Let π0
Np

(x(k−1), r̃(k))=: (µ0
1(x(k−1), r̃(k)),µ0

2(·), . . . ,µ
0
Np

(·)) denote a minimizer of the
worst-case problem whenever the infimum is attained, i.e.,

π0
Np

(x(k−1), r̃(k)) ∈ arg min
π(k)∈Π

Np
(x(k−1),̃r(k))

max
ẽ(k)∈E

VNp
(x, π, r̃, ẽ) .

In [46] it has been shown that the finite-horizon robust optimal control can be solved us-

ing dynamic programming [6, 5, 39]. The sequences {V 0
s (·),κs(·), Xs}

Np

s=1 and {µ0
s(·)}

Np

s=1

can be computed iteratively, without gridding, performing the following steps:

• Given Xs−1, first compute Zs

Zs : = {(x(k−1), r̃(k),u(k)) : E(Np − s+ 1)u(k)

+ F(Np − s+ 1)f(x(k−1),u(k), e(k))

+G(Np − s+ 1)r(Np − s+ 1)(k) +H(Np − s+ 1)e(k) ≤ h(Np − s+ 1),

(f(x(k−1),u(k), e(k)), r̃(k)) ∈ Xs−1(k), ∀e ∈ E}, (102)

followed by a projection operation

Xs(k) = Projn+nyNp
Zs(k).
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• Given V 0
s−1(·), the function Js(·) ∈ Smps is computed:

Js(x(k−1), r̃(k),u(k)) :=

max
e∈E

{ℓNp−s+1(f(x(k−1),u(k), e(k)),u(k), rNp−s+1(k), e(k))

+ V 0
s−1(f(x(k−1),u(k), e(k)), r̃(k))},

∀(x(k−1), r̃(k),u(k))∈Zs(k), (103)

• Given Js(·) and Zs, compute V 0
s (·) and κs(·)

V 0
s (x(k−1), r̃(k)) = min

u(k)
{Js(x(k−1), r̃(k),u(k)) : (x(k−1), r̃(k),u(k)) ∈ Zs(k)},

∀(x(k−1), r̃(k)) ∈ Xs(k), (104)

κs(x, r̃) = argmin
u

{Js(x, r̃,u) : (x, r̃,u) ∈ Zs} ∀(x, r̃) ∈ Xs, (105)

The (set-valued) control law κ(x, r̃) is a polyhedron for a given (x, r̃) ∈ X. Moreover,
it is always possible to select a continuous and PWA control law µ0

Np−s+1(·) such

that µ0
Np−s+1(x, r̃) ∈ κ(x, r̃) for all (x, r̃) ∈ X.

We have shown that we can compute an optimal control policy over a prediction
horizon of Np steps by solving Np parametric LP problems. The key assumptions that
allow us to guarantee convexity of the partial return functions and their domains at each
dynamic programming iteration, were that the stage cost be a max-plus-non-negative-
scaling expression in the state and that the matrices associated with the state constraints
all have non-negative entries.

4.3 The stochastic perturbation case

In this section we consider MPL system (81)-(82) where we assume that the uncertainty
has stochastic properties. Hence, e(k) is a stochastic variable.

The stochastic MPL-MPC problem for event step k can be defined as:

min
ũ(k)

Jout(k) + βJin(k)

subject to

x(k+j)=A⊗x(k+j−1)⊕B⊗u(k+j) for j = 0, . . . , Np − 1 (106)

y(k + j) = C⊗ x(k + j) for j = 0, . . . , Np − 1 (107)

∆u(k + j) > 0 for j = 0, . . . , Np − 1 (108)

∆2u(k + ℓ) = 0 for j = 0, . . . , Np − 1 (109)

E(k)ũ(k) + F(k)IE[ỹ(k)] +Gr̃(k) ≤ h(k) (110)

where (110) represents the linear constraints on the inputs and the outputs and IE[·]
denotes the expectation. In this section Jout and Jin are chosen as follows:

Jout(k) =
∑

i

IE[η̃i(k)] (111)

Jin(k) = −
∑

j

ũj(k) (112)

where the “tardiness” error is given by

η̃(k) = ((ỹ(k)− r̃(k))⊕ 0),
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or
η̃i(k) = max( ỹi(k)− r̃i(k) , 0 ) . (113)

With (84) we obtain

Jout(k) =
∑

i

IE
[

max
( {

[C̃(k)]i ⊗ x(k)⊕ [D̃(k)]i ⊗ ũ(k)
}

− r̃i(k) , 0
)]

(114)

where [C̃(k)]i and [D̃(k)]i denote the ith row of C̃(k) and D̃(k), respectively.

Convexity of stochastic MPL-MPC

In order to compute the optimal MPC input signal, we need the expectation of the signals
η̃(k) and ỹ(k). In this section we present a method to compute IE[η̃i(k)] and IE[ỹ(k)] and
we show that these expectations are convex. As a consequence, the MPL-MPC problem
is convex.

Lemma 19 [56]
Define the vector z(k) as

z(k) =









−r̃(k)
x(k − 1)
ũ(k)
ẽ(k)









Then, the future tardiness error η̃(k) and the future output signal ỹ(k) belong to Smpns(z(k)).
⋄

Proof : Lemma 15 shows that the entries of C̃(ẽ(k)) and D̃(ẽ(k)) belong to Smpns(ẽ(k)).
Then, using (113), (84) and again Proposition 2 we find that both η̃(k) and ỹ(k) belong
to Smpns(z(k)). ⋄

Let v(k) ∈ Smpns(z(k)), where z(k) is as defined in Lemma 19. In the sequel of this
section we will derive how to compute the expectation IE[v(k)], and show that IE[v(k)]

has some nice convexity properties. Define w(k) =
[

−r̃T (k) xT (k − 1) ũT (k)
]T

to
be the non-stochastic part of z(k). Then, because of Lemma 19 and the definition of
max-plus-non-negative-scaling functions, there exist scalars αj and non-negative vectors
βj and γj , such that

v(k) = max
j=1,...,nv

(

αj + βT
j w(k) + γT

j ẽ(k)
)

Define the sets Φj(w(k)), j = 1, . . . , nv such that for all ẽ(k) ∈ Φj(w(k)) there holds:

v(k) = αj + βT
j w(k) + γT

j ẽ(k)

and
nv
⋃

j=1

Φj(w(k)) = R
nẽ

Denote the probability density function of ẽ by p. Then

v̂(k) = IE[v(k)] (115)

=

∫ ∞

−∞

. . .

∫ ∞

−∞

v(k) p(ẽ) dẽ (116)

=

∫ ∞

−∞

. . .

∫ ∞

−∞

max
j=1,...,nv

(

αj + βT
j w(k) + γT

j ẽ
)

p(ẽ) dẽ (117)

=

nv
∑

j=1

∫

ẽ∈Φj(w(k))

. . .

∫

(

αj + βT
j w(k) + γT

j ẽ
)

p(ẽ) dẽ (118)

31



where dẽ = dẽ1 dẽ2 . . . dẽnẽ
.

The following proposition shows that v̂(k) is convex in the vector w(k).

Proposition 20 [56]
The function v̂(k) as defined in (115) is convex in w(k) and a subgradient gv(k) is given
by

gv(k) =

nv
∑

ℓ=1

βT
ℓ

∫

ẽ∈Φℓ(w(k))

· · ·

∫

p(ẽ) dẽ (119)

⋄

Now consider the MPC problem (20) – (24). First note that because of Lemma 20,
IE[η̃i(k)] and IE[ỹ(k)] are convex in w(k). This means that Jout(k) and J(k) are convex
in ũ(k).

Property 21 If the linear constraints are monotonically nondecreasing as a function of
IE[ỹ(k)] (in other words, if [F]ij > 0 for all i, j), the constraint (22) becomes convex in
ũ(k).

So, if the linear constraints are monotonically nondecreasing, the MPL-MPC problem
turns out to be a convex problem in ũ(k), and both a subgradient of the constraints and a
subgradient of the cost criterion can easily be derived using Lemma 20. Note that convex
optimization problems can be solved using reliable and efficient optimization algorithms,
based on interior point methods [48, 62].

Piecewise affine and piecewise polynomial probability density functions

So far, we did not make any assumption on the characterization of probability function
p(ẽ). For the computation of the cost criterion and the constraints we need the values
of IE[ỹ(k)] and IE[η̃(k)]. If we choose for example a Gaussian distribution, they can
be calculated from (118) using numerical integration. Numerical integration is usually
time-consuming and cumbersome, but can be avoided by choosing piecewise affine or
piecewise polynomial probability density functions (possibly as an approximation of the
real probability density function).

Let p(ẽ) be piecewise affine functions, so consider sets Pℓ , ℓ = 1, . . . , np, such that for
ẽ ∈ Pℓ the probability density function is given by:

p(ẽ) = µℓ + ζTℓ ẽ

Consider a signal v(k) ∈ Smpns(z(k)) and let w(k) be its non-stochastic part. Let
Ejℓ(w(k)) = Φj(w(k)) ∩ Pℓ for j = 1, . . . , nv, ℓ = 1, . . . , np, then v̂(k) is given by

v̂(k) =

np
∑

ℓ=1

nv
∑

j=1

∫

ẽ∈Ejℓ(w(k))

· · ·

∫

(

αj + βT
j w(k) + γT

j ẽ
)

(µℓ + ζTℓ ẽ) dẽ

This is an integral of a quadratic function in ẽ and can be computed analytically for
all regions Ejℓ. In general, for piecewise polynomial probability density functions, the
integral will be a polynomial function in ẽ, and can be computed analytically for all
regions Ejℓ [10, 30].

If piecewise affine or polynomial probability density functions are used as an approxi-
mation of “true” non-polynomial probability functions, the quality of the approximation
can be improved by increasing the number of sets np.
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Remark 22 Approximate methods Note that in the algorithm to solve the robust
MPC problem with stochastic uncertainty, an optimization problem has to be solved at
each time step, which is, in general, a highly complex and computationally hard problem.
Two approaches have been developed to reduce the computational burden. The first
approach [61] considers a method based on variability expansion. In particular, it is
shown that the computational load is reduced if one decreases the level of ‘randomness’ in
the system. Another method [21] uses an approximation approach that is based on the pth
raw moments of a random variable. This method results in a much lower computational
complexity and computation time while still guaranteeing a good performance. ⋄

5 Conclusions and future work

This chapter has focused on the application of the popular Model Predictive Control
(MPC) framework to Max-Plus-Linear (MPL) systems. One of the main advantages of
the MPL-MPC approach is that it allows to include general linear inequality constraints
on the inputs, states, and outputs of the system. We have provided a review of the main
principles underlying MPL-MPC, and outlined some of the theoretical, computational,
and implementation aspects. We focused on the main ingredients of the MPC framework,
i.e., prediction model, cost criterion, and constraints, and we formulated the standard
MPC problem for MPL systems. We reviewed some algorithms to solve the MPL-MPC
problem and discussed the key advantages and disadvantages. Besides some basic results
for the stability of the closed-loop controlled system, an analytic expression of the con-
troller has been given. We have also addressed the robust formulation of MPL-MPC, in
which the uncertainty caused by disturbances and errors in the estimation of physical
variables is gathered in an uncertainty variable that parameterizes the system matrices
A, B, and C. We have distinguished between the case that the uncertainty is bounded
and the case that the uncertainty has stochastic properties.

In future work we will further study the problem of closed-loop stability and focus
on the relaxation of the conditions on the controller tuning parameters. Finally we will
focus on extending the derived properties to switching max-plus-linear systems [57, 59],
i.e., discrete-event systems that can switch between different modes of operation. In
each mode the system is then described by an MPL state equation and an MPL output
equation, with different system matrices for each mode.
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Nationale Supérieure des Mines de Paris, France, July 1992.

[23] S. Gaubert. On rational series in one variable over certain dioids. Technical Report
2162, INRIA, Le Chesnay, France, January 1994.

[24] M.J. Gazarik and B.E.W. Kamen. Reachability and observability of linear systems
over max-plus. Kybernetika, 35(1):2–12, 1999.

[25] H. Goto, K. Takeyasu, S. Masuda, and T. Amemiya. A gain scheduled model pre-
dictive control for linear-parameter-varying max-plus-linear systems. In Proceedings
of the American Control Conference, Denver, Colorado, June 2003.

[26] A. Guezzi, Ph. Declerck, and J.-L. Boimond. From monotone inequalities to model
predictive control. In Proceedings of the Conference on Emerging Technologies and
Factory Automation (ETFA 2008), pages 1310–1317, Hamburg, Germany, September
2008.

[27] W. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid dynamical
models. Automatica, 37(7):1085–1091, July 2001.

[28] B. Heidergott, G.J. Olsder, and J. van der Woude. Max Plus at Work. Princeton
University Press, Princeton, 2006.

[29] R. Katz. Max-plus (a,b)-invariant spaces and control of timed discrete-event systems.
IEEE Transactions on Automatic Control, 52(2):229–241, 2007.

[30] J.B. Lasserre. Integration on a convex polytope. Proceedings of the 1998 American
Mathematical Society, 126(8):2433–2441, August 1998.

[31] E. Le Corronc, B. Cottenceau, and L. Hardouin. Control of uncertain (max,+)-linear
systems in order to decrease uncertainty. In Proceedings of the Workshop on Discrete
Event Systems, pages 410–415, Berlin, Germany, August 30–September 1, 2010.

[32] M. Lhommeau, L. Hardouin, and B. Cottenceau. Disturbance decoupling of timed
event graphs by output feedback controller. In Proceedings of the 6th International
Workshop on Discrete Event Systems (WODES), Zaragoza, Spain, October 2002.

[33] M. Lhommeau, L. Hardouin, B. Cottenceau, and L. Jaulin. Interval analysis in
dioid: application to robust controller design for timed-event graphs. Automatica,
40(11):1923–1930, November 2004.

[34] F. Liu. Robust and adaptive supervisory control of discrete event systems. IEEE
Transactions on Automatic Control, 38(12):1848–1852, December 1993.

[35] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, Pearson Edu-
cation Limited, Harlow, UK, 2002.

[36] C.A. Maia, C.R. Andrade, and L. Hardouin. On the control of max-plus linear system
subject to state restriction. Automatica, 47(5):988–992, 2011.

[37] C.A. Maia, L. Hardouin, R. Santos-Mendes, and B. Cottenceau. Optimal closed-
loop of timed event graphs in dioids. IEEE Transactions on Automatic Control,
48(12):2284–2286, December 2003.

[38] T.H. Mattheiss and D.S. Rubin. A survey and comparison of methods for finding all
vertices of convex polyhedral sets. Mathematics of Operations Research, 5(2):167–
185, May 1980.

[39] D.Q. Mayne. Control of constrained dynamic systems. European Journal of Control,
7(2-3):87–99, 2001.

[40] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789–814, 2000.

35



[41] E. Menguy, J. Boimond, L. Hardouin, and J. Ferrier. Just-in-time control of timed
event graphs: Update of reference input, presence of uncontrollable input. IEEE
Transactions on Automatic Control, 45(9):2155–2159, 2000.

[42] E. Menguy, J.L. Boimond, and L. Hardouin. Adaptive control for linear systems
in max-algebra. In Proceedings of the International Workshop on Discrete Event
Systems (WODES’98), pages 481–488, Cagliari, Italy, August 1998.

[43] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The double description
method. In H.W. Kuhn and A.W. Tucker, editors, Contributions to the Theory
of Games, number 28 in Annals of Mathematics Studies, pages 51–73. Princeton
University Press, Princeton, New Jersey, 1953.

[44] I. Necoara, B. De Schutter, T.J.J. van den Boom, and H. Hellendoorn. Stable model
predictive control for constrained max-plus-linear systems. Discrete Event Dynamic
Systems: Theory and Applications, 17(3):329–354, September 2007.

[45] I. Necoara, B. De Schutter, T.J.J. van den Boom, and H. Hellendoorn. Robust
control of constrained max-plus-linear systems. International Journal of Robust and
Nonlinear Control, 19(2):218–242, January 2009.

[46] I. Necoara, E.C. Kerrigan, B. De Schutter, and T.J.J. van den Boom. Finite-horizon
min-max control of max-plus-linear systems. IEEE Transactions on Automatic Con-
trol, 52(6):1088–1093, June 2007.

[47] I. Necoara, T.J.J. van den Boom, B. De Schutter, and J. Hellendoorn. Stabilization
of max-plus-linear systems using model predictive control: The unconstrained case.
Automatica, 44(4):971–981, April 2008.

[48] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. SIAM, Philadephia, Pennsylvania, USA, 1994.

[49] S.J. Park and J.T. Lim. Fault-tolerant robust supervisor for discrete event systems
with model uncertainty and its application to a workcell. IEEE Transactions on
Robotics and Automation, 15(2):386–391, April 1999.

[50] K.M. Passino and K.L. Burgess. Stability Analysis of Discrete Event Systems. John
Wiley & Sons, New York, USA, 1998.

[51] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New
Jersey, 1970.

[52] R.T. Rockafellar and R.J.B. Wets. Variational Analysis. Springer-Verlag, Berlin,
Germany, 2004.

[53] A.R.M. Soeterboek. Predictive Control - A Unified Approach. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1992.

[54] T.J.J. van den Boom and B. De Schutter. Model predictive control for perturbed
max-plus-linear systems. Systems & Control Letters, 45(1):21–33, January 2002.

[55] T.J.J. van den Boom and B. De Schutter. Properties of MPC for max-plus-linear
systems. European Journal of Control, 8(5):53–62, 2002.

[56] T.J.J. van den Boom and B. De Schutter. Model predictive control for perturbed
max-plus-linear systems: A stochastic approach. International Journal of Control,
77(3):302–309, February 2004.

[57] T.J.J. van den Boom and B. De Schutter. Modelling and control of discrete event
systems using switching max-plus-linear systems. Control Engineering Practice,
14(10):1199–1211, October 2006.

[58] T.J.J. van den Boom and B. De Schutter. MPC for max-plus-linear systems with
output weighting: steady-state behavior and guaranteed stability. In Proceedings of
the Conference on Decision and Control 2009, pages 2286–2291, Shanghai, China,
December 2009.

36



[59] T.J.J. van den Boom and B. De Schutter. Modeling and control of switching max-
plus-linear systems with random and deterministic switching. Discrete Event Dy-
namic Systems, 12(3):293–332, September 2012.

[60] T.J.J. van den Boom, B. De Schutter, and I. Necoara. On MPC for max-plus-linear
systems: Analytic solution and stability. In Proceedings of the joint Conference on
Decision and Control/European Control Conference 2005, pages 7816–7821, Sevilla,
Spain, December 2005.

[61] T.J.J. van den Boom, B. Heidergott, and B. De Schutter. Complexity reduction in
MPC for stochastic max-plus-linear systems by variability expansion. Automatica,
43(6):1058–1063, June 2007.

[62] S.J. Wright. Primal-Dual Interior Point Methods. SIAM, Philadephia, Pennsylvania,
1997.

[63] S. Young and V.K. Garg. Model uncertainty in discrete event systems. SIAM Journal
on Control and Optimization, 33(1):208–226, January 1995.

[64] Y. Zou and S. Li. Max-plus-linear model-based predictive control for constrained
hybrid systems: linear programming solution. Journal of Control Theory and Appli-
cations, 5(1):71–76, 2007.

37


